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A higher order theory is developed to model the behaviour of laminated plates. This
theory is based on a warping theory of plate deformation developed by Hassis [1]. Through
comparison with elasticity solutions obtained with classical models [2}6] and the higher
order theory of Lo et al. [7, 8], it is shown that the present theory correctly models e!ects not
attainable by the low order theories.
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1. INTRODUCTION

A laminate consists of two or more laminate bonded together to act as an integral structural
element. The laminae principal material directions are oriented to produce a structural
element capable of resisting load in several directions. The sti!ness of such a composite
material con"guration is obtained from the properties of the constituent laminae.

The classical lamination theory, often abbreviated as CLT, considers that [2}6]:

f the normal "bre to the middle surface of the laminate is assumed to remain straight (the
Kirchho! hypothesis: and perpendicular to the middle surface) when the laminate is
extended and bent.

f the normal are presumed to have constant length.

The CLT uses the following "eld displacement, in the (x
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where M is a point of the laminated plate, (x1, x2) are the middle surface co-ordinates and x3

is the normal co-ordinate to the middle surface. (u
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, u
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, u

3
) are the displacement of the mean

plane written in the local plane co-ordinate, and (;
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,;
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,;

3
) are the displacement of a point

of the plate written in the local plane co-ordinate.
Relation (1) predicts uniform shear stress distribution and a linear one for #exural stress

through the thickness of the plate.
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Lo et al. [7, 8] presented a higher order theory which take the following displacement
forms:
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Lo's theory (2) was developed for homogeneous plates and extended to laminated plates.
In this work, the warping theory, developed for plates [9] and generalized to shells [1], is

extended here to laminated plates.

2. DISPLACEMENT FIELD OF THE WARPING THEORY

In reference [9] a theory of plate deformation was derived which accounts for the e!ects
of transverse shear deformation, transverse normal strain and a non-linear distribution of
the in-plane displacements with respect to the thickness co-ordinate. This theory uses the
normal modes associated with the normal "bre (considered as a geometrical beam) as basis
functions. Using the rigid-body modes and the deformation normal modes, a higher order
theory was constructed. The theory was based on the non-uniform distribution of in-plane
displacement: it was called the &&warping'' phenomenon. In the present higher order theory,
the non-uniformity of in-plane displacement of plate is considered to be a linear
combination of the normal modes of the normal "bre to the mid-plane, considered as
a &&geometrical beam''.

A higher order theory "nds applications in the case of top and bottom boundary
conditions of shear traction, in high-frequency dynamic analysis of plates, and in laminate
plates, etc. In these cases, a higher order theory must be used because of the likely strongly
non-linear thickness distribution of stresses and displacements [8, 10}14].

The warping theory takes the following displacement forms:
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where M/
n
N and MU

k
N denote, respectively, the nth transverse and the kth longitudinal modes

of vibration (see Appendix A) inducing deformations of the normal "bre which is considered
as a geometrical beam.

This displacement "eld includes both in-plane and out-of-plane deformation modes. The
functions (=n

1
,=n

2
,=k

3
) represent the intensity of the participation of the modes to warping

of the normal "bre. The functions (=n
1
, =n

2
, =k

3
) are called warping co-ordinates.

Figures 1 show the "rst two transverse and longitudinal modes (horizontal axis) as
functions of the normalized normal co-ordinate x3/h (vertical axis). The number of modes
used depends on the order of the theory needed..

3. LAMINATED PLATE THEORIES

3.1. STRESS-STRAIN BEHAVIOUR

Consider a laminated plate of thickness h, as shown in Figure 2(a), with the co-ordinate
system at the mid-plane of the laminate. Each layer is orthotropic with respect to the x- and



Figure 1(a). Two "rst transverse modes for geometrical beam associated to the normal "bre.

Figure 1(b). Two "rst longitudinal modes for geometrical beam associated to the normal "bre.

Figure 2(a) Geometry of the laminate.

Figure 2(b). Positive rotation of principal material axes (x, y) from axes used (x1, x2).
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y-axis. The "bre direction within a layer number i is indicated by an angle h
i
. The moduli of

elasticity for a layer parallel to "bres is Ci
11

and perpendicular to "bres is Ci
22

. For each
layer, the generalized Hooke's law relating stresses to strains can be written, in contracted
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notation as (in the material axis x and y: see Figure 2(b))
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are, respectively, the Young moduli in x, y, and z direction and l

ij
are the Poisson

ratio for transverse strain in the j direction when stressed in the i direction.
For an arbitrary orientation de"ned by h, the previous relation becomes (in the used axis

(x1, x2 ): see Figure 2(b))
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where CM
ij

are the components of the anisotropic sti!ness matrix de"ned by
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3.2. STRAIN TENSOR

The strain tensor associated with equation (3) is written as
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3.3. STRESS RESULTANT

For the warping theory, the stress resultants are de"ned by
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3.4. EQUATIONS OF MOTION

The governing equations pertinent to this theory are derived using the principle of virtual
works in the same manner as that in reference [9]. The governing equations of motion of the
warping theory are given by (see Appendix B)
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where uK u is the projection on plane of the plane displacement, fu is the in-plane forces
vector, mu is the in-plane moments vector, f

n
is the projection of the in-plane vector forces

on the nth transverse normal mode, f 3
k

is the projection of the out-of-plane force ( f 3) on the
kth longitudinal normal mode.

The boundary conditions are
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where (fu)s is the in-plane boundary forces vector, (mu)s is the in-plane boundary moments
vector, (f
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Equations (11) express the equilibrium between the internal and the external forces on the

boundary; for example the "rst equation of equation (11) expresses the equilibrium between
the normal stress and the in-plane force associated with the boundary.



Figure 3(a). The plate considered for applications.

Figure 3(b). Flexural stress distribution for homogeneous plate at h/¸"1)5 and for l"0)25: ( ) Mindlin
solution; ( ) Lo solution; ( ) warping (Hassis) solution; ( ) Exact solution.
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4. NUMERICAL APPLICATIONS

To validate the accuracy of the present model, a homogeneous plate and two kinds of
laminated plates are considered. The "rst laminated plate is an angle-ply laminate and the
second one is a bi-directional laminate.

For the three examples, an in"nite (in x2-direction) and a simply supported plate at
x1"0 and x1"l is considered (l is the length of the plate). The plate is subjected to a static
pressure on the top surface x3"h/2 (h is the thickness of the plate) of the form
(see Figure 3(a))

q"q
0
sinA

nx1

¸ B (12)

with all other surface tractions identically equal to zero. ¸ is the half wavelength of the
sinusoidal loading pattern.
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The problem can be solved by assuming a solution of the form
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equation 11) are satis"ed by using the displacements (13a):
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4.1. HOMOGENEOUS PLATE

As a "rst validation, an homogeneous plate is considered. The #exural stress distributions
across the thickness of the plate are displayed in Figure 3(b) for h/¸"1)5. From Figure 3(b),
it is seen that the Reissner}Mindlin solution does not come close to reproducing the exact
solution. Considering the complex shape of the exact solution stress distribution, it is
obvious from Figure 3(b) that the Lo et al. and warping solutions provide e!ective
modelling techniques. One can note here that by considering the orthogonality between
modes, the warping model is simpler than the Lo et al. model.

4.2. ANGLE-PLY LAMINATE

The second example is a three-layer angle-ply symmetric laminated plate. Numerical
results for a three-layer symmetric laminate are shown in Figures 4}7. The ply orientation
and thickness are (#303, !303, #303) and (h/4, h/2, h/4) respectively. The following
properties used for each ply are:
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where ¸ and ¹ are the directions parallel and normal to the "bres, respectively, and l
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the Poisson ratio measuring transverse strain under normal stress parallel to the "bres.
These are typical values of high modulus graphite/epoxy composites. The stress and
displacement components in Figures 4}7 are normalized as follows:
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Results are compared with the high order model developed by Lo et al. [8]
and a Reissner}Mindlin solution. Results of the comparison between Lo et al. and the



Figure 4. In-plane displacement for [#303, !303, #303] angle-ply laminated at ¸/h"10: ( ) Mindlin
solution; ( ) Lo solution; ( ) warping (Hassis) solution.

Figure 5. Flexural stress distribution for [#303, !303, #303] cross-ply laminate at ¸/h"10: ( )
Mindlin solution; ( ) Lo solution; ( ) warping (Hassis) solution.
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exact solutions can be found in Lo et al. [7, 8]. The exact solutions are given by Pagano
[10, 11].

Figures 5 and 7 show the #exural stress distributions for the case ¸/h"10 and
4 respectively. The agreement with Lo et al. solution is exceptionally good even in the region
of high values of #exural stress.

Figures 4 and 6 show the corresponding in-plane displacement in the x1 direction. As in
the case of #exural stresses, good agreement with Lo et al. solution is observed. As
mentioned in references [6, 7], these results reveal the necessity for modelling the non-linear
distribution of displacements for laminated plates. The Reissner}Mindlin solution does not



Figure 6. In-plane displacement for [#303, !303, #303] angle-ply laminated at ¸/h"4: ( ) Mindlin
solution; ( ) Lo solution; ( ) warping (Hassis) solution.

Figure 7. Flexural stress distribution for [#303, !303, #303] cross-ply laminate at ¸/h"4: ( ) Mindlin
solution; ( ) Lo solution; ( ) warping (Hassis) solution.
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appear satisfactory concerning the non-uniform distribution of the normal stress and
in-plane displacement.

4.3. BI-DIRECTIONAL LAMINATES

A more critical test of the laminated plate theory can be obtained by repeating the
foregoing problem for a symmetric bi-directional laminate. In this case, a higher
discontinuity in material properties is experienced at the interface of di!erent layers.
Numerical results for a three-layered (03, 903, 03) bi-directional laminate are given in Figures



Figure 8. Flexural stress distribution for [03, 903, 03] cross-ply laminate at ¸/h"10: ( ) Mindlin solution;
( ) Lo solution; ( ) warping (Hassis) solution.

Figure 9. Flexural stress distribution for [03, 903, 03] cross-ply laminate at ¸/h"4: ( ) Mindlin solution;
( ) Lo solution; ( ) warping (Hassis) solution.

A WARPING MODEL FOR LAMINATED PLATES 257
8 and 9 for the #exural stress distributions. The material properties in each layer are the
same as given in equation (14) and the results are compared with the higher order model
developed by Lo et al. [8] (which is compared in reference [8] with the exact solution given
by Pagano [10, 11]) and a Reissner}Mindlin solution. As in the case of angle-ply laminates,
close agreement of the numerical results with exact solutions is obtained.

5. DISCUSSION}CONCLUSION

The current investigation presents an analysis of a warping model for laminated plates.
The extension of the warping model to laminated plate condition is of particular
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importance since it is known that for laminates the distribution of in-plane displacements
across the thickness may be strongly non-linear.

By comparing the results obtained with the exact elasticity solutions, the classical
laminated plate solutions and the Lo's higher order model solutions, it is obvious that the
warping high order laminated plate theory gives a good approximation to the behaviour of
laminated plates. The in-plane contribution to the solution has been shown to be signi"cant
and cannot be neglected. Thus, it is seen that for laminates a higher order theory of the
warping type rather than classical models is required.

In the case of warping model, there is no coupling between the in-plane and the
out-of-plane response. Due to the orthogonality of modes, the warping model gives simpler
equations than the Lo et al. model.

Finally, it should be mentioned that the present results were obtained with no recourse to
shear correction factors, which are commonly employed in laminated plate analysis. As
discussed in reference [9], it would be inconsistent to employ these factors with a high order
theory of plate deformation.
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APPENDIX A

The transverse normal modes for a free}free beam are
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For a free}free beam, the longitudinal modes are written as follows:
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APPENDIX B

For the warping model, the interior virtual work is
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For the warping model, the exterior virtual work is (for the surface density)

=
e
"Pu

[ f aua#maba#f a
n
=na#f 3u

3
#f 3

k
=k

3
] du

#Pdu
[ f a

s
(ua#ma

s
ba#(Fa

n
)
s
=na#f 3

s
u
3
#( f 3

k
)
s
=k

3
] dC.

For the warping model, the inertial virtual work is (the second order terms are neglected)

=
j
"!Pu CohuK aua#o

h3

12
bG aba#ohR

n
=G a

n
=na#oh f 3uK

3
#ohm

k
=G 3

k
=3

k Ddu.

The application of the virtual work leads to the equilibrium equations (10) and boundary
conditions (11).
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